

Black Ginger: A Comprehensive Review of Its Distribution in Northeastern India and Medicinal Properties

Authors:

Dr. Dolpriya Devi Manoharmayum,
Assistant Professor, Department of Integrated Research and Discovery,
Koneru Lakshmaiah Education Foundation -
KLEF (Deemed To Be University), Guntur, Andhra Pradesh, India.
<https://orcid.org/0000-0003-1188-9450>
First Author

Prof. Dr. Harikumar Pallathadka
Vice-Chancellor & Professor, Manipur International University
Imphal, Manipur, India
<https://orcid.org/0000-0002-0705-9035>
Second and Corresponding Author

Prof. Dr. Parag Deb Roy
Social Scientist & Independent Researcher,
Guwahati, Assam, India
Third Author

Executive Summary

Black ginger (*Kaempferia parviflora* Wall. ex Baker), also known as Thai ginseng or Krachai dum, is an exceptional medicinal plant from the family Zingiberaceae that has gained significant scientific and commercial attention in recent years. This herbaceous plant, native to Southeast Asia, demonstrates remarkable therapeutic potential with its 14 major pharmacological properties, making it one of the most medicinally important plants in its genus. While traditionally associated with Thailand, black ginger has been specifically documented in eastern India, particularly in subtropical and tropical areas, and is native to northeastern and central India, where it holds special significance for tribal celebrations. This review examines its botanical characteristics, geographical distribution, phytochemistry, and extensive medicinal applications, providing a comprehensive resource for researchers, practitioners, and cultivators.

Introduction

The quest for effective natural remedies has led to intensified research on traditional medicinal plants, with black ginger emerging as a particularly promising candidate. *Kaempferia parviflora*

is widely distributed throughout Southeast Asia, India, South China, Malaysia, Thailand, and Laos, demonstrating remarkable adaptability across diverse climatic zones. The plant's therapeutic applications have been recognized for centuries, with traditional uses spanning more than 1000 years in Thailand and documented medicinal applications in various Asian cultures.

The increasing global demand for natural health solutions has positioned black ginger at the forefront of herbal medicine research. Global demand for medicinal plants is rising due to increased research activities discovering medicinal values in new plant species, and black ginger has emerged as one of the most studied members of the Zingiberaceae family. This comprehensive review synthesizes current scientific knowledge about black ginger, with particular emphasis on its presence and utilization in northeastern India.

Botanical Description and Taxonomy

Morphological Characteristics

Black ginger is a perennial herb that grows up to 90 cm in height, featuring white inflorescences with a purple tinge. The plant's most distinctive feature is its rhizome, which ranges from light to dark purple and may appear completely black, hence its common name. It has one to several leaves, measuring 7 to 20 cm in length, and carries a characteristic aromatic odor with a slightly bitter taste.

Taxonomic Classification

The taxonomic classification of black ginger is well-established within the plant kingdom:

- **Division:** Magnoliophyta
- **Class:** Liliopsida
- **Order:** Zingiberales
- **Family:** Zingiberaceae
- **Genus:** Kaempferia
- **Species:** K. parviflora

The genus 'Kaempferia' was named after German physician Engelbert Kaempfer (1651–1716) by Linnaeus, with the genus being recognized in 1753. The Zingiberaceae family encompasses approximately 1300 species under 53 genera, making it one of the most diverse families in the order Zingiberales.

Geographic Distribution and Habitat

Natural Distribution

Black ginger is an important medicinal plant without a clear center of origin, claimed to be found throughout India and Southeast Asia, though it is densely populated especially in Thailand where 20 or more species from this genus are found. In Thailand, it is originally found in the North and Northeast regions, where it has been cultivated and utilized for generations.

Presence in Northeastern India

The presence of black ginger in northeastern India is particularly significant for local communities and traditional medicine practitioners. Native to northeastern and central India, Blue Ginger (Black Ginger) is loved globally and has special significance for tribal pujas (celebrations) around the time of the Indian New Year. This regional connection highlights the plant's cultural importance beyond its medicinal applications.

Black ginger is mostly found in the subtropical and tropical areas of Asia, with northeastern India providing ideal growing conditions due to its warm, humid climate and fertile soils. The region's biodiversity hotspot status makes it a crucial area for the conservation and cultivation of this valuable medicinal plant.

Growing Conditions and Habitat Requirements

Black ginger grows best in loose, nutrient-rich, well-draining soil, requiring water in spring and summer while remaining dormant during winter months. The plant thrives in environments with full sun to partial shade, adapting well to various light conditions. Black ginger can grow up to 3 feet tall and reaches maturity for harvest after 8-10 months of planting, making it a relatively fast-growing medicinal crop.

Phytochemistry and Active Compounds

Major Bioactive Constituents

The therapeutic properties of black ginger stem from its rich phytochemical profile, particularly its unique collection of polymethoxyflavonoids (PMFs). Black ginger extract is rich in polymethoxy flavonoids, which exhibit various bioactivities. Research has identified several key compounds responsible for the plant's medicinal properties:

1. **5,7-dimethoxyflavone:** This compound has been shown to improve muscular metabolism and suppress muscular inflammatory responses
2. **5,7,4'-trimethoxyflavone:** Known for its vascular relaxation properties
3. **3,5,7,3',4'-pentamethoxyflavone:** Demonstrates relaxant effects on human cavernosum tissue
4. **7-methoxyflavones:** Exhibits anticholinesterase activity

Chemical Composition Profile

High performance liquid chromatography analysis has identified methoxyflavonoids in rhizome extract, which can be used in cosmetics as natural anti-aging agents. The rhizome's chemical composition includes:

- **Flavonoids:** Primarily polymethoxyflavonoids with unique bioactive properties
- **Terpenoids:** Contributing to the plant's aromatic characteristics
- **Essential oils:** Responsible for the characteristic odor and some therapeutic effects
- **Alkaloids:** Present in smaller quantities but contributing to overall bioactivity

Traditional and Ethnomedicinal Uses

Historical Applications

In traditional Thai medicine, black ginger has been purported to cure allergies, asthma, impotence, gout, diarrhea, dysentery, peptic ulcers, and diabetes. The plant's traditional applications extend across various cultures and regions, with documented uses including:

- **Gastrointestinal support:** The Karen community in Thailand frequently uses *K. parviflora* to treat stomach ulcers by decocting fresh rhizomes to concentrate liquid before consumption
- **Anti-diarrheal treatment:** The juice of black ginger is prescribed by traditional medicine practitioners in Bangladesh to treat diarrhea along with vomiting
- **Energy enhancement:** Traditionally used by the indigenous Thai community to boost stamina for strenuous mountain trekking

Preparation Methods in Traditional Medicine

Traditional preparation methods vary across cultures but commonly include:

- **Decoctions:** Fresh rhizomes boiled to create concentrated medicinal liquids
- **Powders:** Dried rhizomes ground into powder for various applications
- **Wine preparations:** Fresh rhizomes used to brew medicinal wines
- **Teas:** Fresh black ginger slices simmered for 15 minutes to create aromatic tea

Pharmacological Properties and Mechanisms

Antioxidant and Anti-inflammatory Effects

K. parviflora demonstrated antioxidant, anti-inflammatory, antiobesity, anticancer, vascular relaxation, and antimicrobial effects. The plant's potent antioxidant properties stem from its

high flavonoid content, with studies showing significant free radical scavenging activity. The anti-inflammatory mechanisms involve:

- Inhibition of pro-inflammatory cytokines
- Reduction of oxidative stress markers
- Modulation of inflammatory signaling pathways

Cardiovascular and Vascular Benefits

The cardiovascular benefits of black ginger are particularly noteworthy. *K. parviflora* has vascular relaxation properties, which contribute to improved blood flow and circulation. Specific cardiovascular effects include:

- Blood vessel relaxation through multiple mechanisms
- Enhanced nitric oxide production
- Improved endothelial function
- Support for healthy blood pressure levels

Metabolic and Energy Enhancement

Black ginger extract enhances energy production by improving glucose, lactic acid, and lipid metabolism in myocytes. The metabolic benefits include:

- Enhanced glucose utilization
- Improved lipid metabolism
- Increased energy substrate utilization
- Support for healthy weight management

Physical Performance Enhancement

Physical fitness performance and muscular endurance were superior in mice orally administered KPE (45 mg/kg/day) for 4 weeks than in control mice. Human studies have confirmed these benefits, with KPE enhancing physical fitness, namely, grip strength, leg muscle strength, balance, endurance, and locomotor activity in athletes, the elderly, and healthy individuals.

Anticancer Properties

Rhizome extracts have shown anticancer activities against cervical cancer, pancreatic cancer, gastric ulcer, ovarian cancer, among others. Recent research has expanded our understanding of black ginger's anticancer potential:

- Multiple cancer cell line studies showing cytotoxic activity
- Induction of apoptosis in cancer cells
- Inhibition of angiogenesis
- Antimetastatic properties

Sexual Health and Reproductive Benefits

Traditional and modern research supports black ginger's role in sexual health. Black ginger significantly enhanced the response to sexual erotic stimuli. The mechanisms include:

- PDE5 inhibition (similar to synthetic erectile dysfunction medications)
- Improved blood flow to reproductive organs
- Enhanced testosterone levels
- Increased libido and sexual performance

Clinical Research and Human Studies

Safety and Toxicology

Toxicological evaluation of standardized Kaempferia parviflora extract through sub-chronic and mutagenicity studies has demonstrated its safety profile. Long-term safety studies have shown:

- No significant adverse effects in chronic administration
- Low mutagenic potential
- Good tolerance in human subjects
- Minimal drug interactions

Clinical Efficacy Studies

A systematic review and meta-analysis of animal and human studies demonstrates the beneficial effects of Kaempferia parviflora on metabolic syndrome and erectile dysfunction. Key clinical findings include:

- Significant improvements in physical fitness parameters
- Enhanced grip strength and muscle endurance
- Improved sexual function in both men and women
- Beneficial effects on metabolic syndrome markers

Commercial Applications and Market Potential

Current Market Status

The status of marketing and industry of the extract in 2017 reveals that the quantity and value of export were quite low, with exported value at 903,375 baht (USD 28,164) while the value of in-house consumption was 33.8 million baht (1.05 million). However, the market has shown significant growth potential, with increasing global demand for natural health products.

Product Forms and Applications

Black ginger is commercially available in various forms:

- **Dietary supplements:** Standardized extracts in capsules and tablets
- **Functional foods:** Incorporated into energy bars and beverages
- **Cosmetics:** Methoxyflavonoids can be used in cosmetics as natural anti-aging agents
- **Sports nutrition:** Pre-workout and endurance-enhancing formulations

Cultivation in India

In India, AsmitA Organic Farms is noted as the sole producer of Black Ginger, cultivating this rare herb with utmost care and expertise. This highlights both the market opportunity and the challenges in establishing commercial cultivation in India.

Sustainable Production and Conservation

Agricultural Considerations

Sustainable production of black ginger requires attention to several factors:

- **Soil management:** Maintaining nutrient-rich, well-draining soils
- **Water management:** Appropriate irrigation during growing seasons
- **Harvest timing:** Optimal harvest after 8-10 months for maximum potency
- **Post-harvest processing:** Proper drying and storage to maintain bioactive compounds

Conservation Efforts

Given the growing demand and limited natural populations, conservation efforts are crucial:

- In situ conservation of wild populations
- Ex situ cultivation in botanical gardens
- Genetic diversity preservation through seed banks
- Community-based conservation programs

Future Research Directions

Emerging Research Areas

Several promising areas warrant further investigation:

1. **Bioavailability enhancement:** Developing improved extraction and delivery methods
2. **Specific disease applications:** Targeted studies for conditions like diabetes, cardiovascular disease, and neurodegenerative disorders
3. **Dosage optimization:** Establishing therapeutic dosages for various conditions
4. **Drug interactions:** Comprehensive studies on potential interactions with conventional medications

Potential for Drug Development

The unique chemical profile of black ginger offers opportunities for pharmaceutical development:

- Natural PDE5 inhibitors for erectile dysfunction
- Anti-inflammatory compounds for autoimmune conditions
- Metabolic enhancers for obesity and diabetes
- Performance-enhancing compounds for sports medicine

Conclusion

Black ginger (*Kaempferia parviflora*) represents a remarkable example of traditional medicine validated by modern science. Its presence in northeastern India and throughout Asia demonstrates its ecological adaptability and cultural significance. The plant's extensive pharmacological properties, including antioxidant, anti-inflammatory, cardiovascular, metabolic, and performance-enhancing effects, make it a valuable resource for both traditional medicine and modern therapeutics.

The current scientific evidence strongly supports the traditional uses of black ginger while revealing additional therapeutic potentials. With proper cultivation, sustainable harvesting, and continued research, black ginger has the potential to become a major contributor to global health and wellness. For northeastern India specifically, this plant represents an opportunity for economic development through sustainable cultivation and value-added processing.

As research continues to unveil the full therapeutic potential of black ginger, its integration into mainstream healthcare appears increasingly promising. The combination of traditional wisdom and modern scientific validation positions black ginger as a model for evidence-based herbal medicine in the 21st century.

References

1. Tan, T. Y. C., Lim, X. Y., Krishnan, P., Rosli, S. H. M., Chan, J. S. W., Voon, Y. L., Ahmad, I. F., Siau, T. C., Awang, N., & Mohamed, A. F. S. (2024). Application of Kaempferia parviflora: A Perspective Review. *Natural Product Communications*, 19(10), 1934578X241281615.
2. Kummee, S., Tewtrakul, S., & Subhadhirasakul, S. (2008). Antimicrobial activity of the ethanol extract and compounds from the rhizomes of Kaempferia parviflora. *Songklanakarin Journal of Science and Technology*, 30(4).
3. Na Takuathung, M., Klinjan, P., & Koonrungsesomboon, N. (2024). A systematic review and meta-analysis of animal and human studies demonstrates the beneficial effects of Kaempferia parviflora on metabolic syndrome and erectile dysfunction. *Nutrition Research*, 122, 80-91.
4. Ninomiya, K., Matsuda, H., Kubo, M., Morikawa, T., Nishida, N., & Yoshikawa, M. (2007). Potent anti-obese principle from Rosa canina: Structural requirements and mode of action of trans-tiliroside. *Bioorganic & Medicinal Chemistry Letters*, 17(11), 3059-3064.
5. Toda, K., Takeda, S., Hitoe, S., Nakamura, S., Matsuda, H., & Shimoda, H. (2016). Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism. *Journal of Natural Medicines*, 70(2), 163-172.
6. Tewtrakul, S., Subhadhirasakul, S., & Kummee, S. (2008). Anti-allergic activity of compounds from Kaempferia parviflora. *Journal of Ethnopharmacology*, 116(1), 191-193.
7. Yoshino, S., Awa, R., Ohto, N., Miyake, Y., & Kuwahara, H. (2019). Toxicological evaluation of standardized Kaempferia parviflora extract: sub-chronic and mutagenicity studies. *Toxicology Reports*, 6, 544-549.
8. Horigome, S., Yoshida, I., Tsuda, A., Harada, T., Yamaguchi, A., Yamazaki, K., ... & Satoyama, T. (2014). Identification and evaluation of anti-inflammatory compounds from Kaempferia parviflora. *Bioscience, Biotechnology, and Biochemistry*, 78(5), 851-860.
9. Park, J. E., Pyun, H. B., Woo, S. W., Jeong, J. H., & Hwang, J. K. (2014). The protective effect of Kaempferia parviflora extract on UVB-induced skin photoaging in hairless mice. *Photodermatology, Photoimmunology & Photomedicine*, 30(5), 237-245.
10. Paramee, S., Sookkhee, S., Sakonwasun, C., Na Takuathung, M., Mungkornasawakul, P., Nimlamool, W., & Potikanond, S. (2018). Anti-cancer effects of Kaempferia parviflora on ovarian cancer SKOV3 cells. *BMC Complementary and Alternative Medicine*, 18(1), 178.
11. Azuma, T., Tanaka, Y., & Kikuzaki, H. (2011). Phenolic glycosides from Kaempferia parviflora. *Phytochemistry*, 72(18), 2419-2427.
12. Jansakul, C., Tachanaparuksa, K., Mulvany, M. J., & Sukpondma, Y. (2012). Relaxant mechanisms of 3,5,7,3',4'-pentamethoxyflavone on isolated human cavernosum. *European Journal of Pharmacology*, 691(1-3), 235-244.
13. Sutthanut, K., Sripanidkulchai, B., Yenjai, C., & Jay, M. (2007). Simultaneous identification and quantitation of 11 flavonoid constituents in Kaempferia parviflora by gas chromatography. *Journal of Chromatography A*, 1143(1-2), 227-233.

14. Welbat, J. U., Sangrich, P., Jirativanont, T., Pannangrong, W., & Chaisawang, P. (2016). Neuroprotective properties of *Kaempferia parviflora* in the 6-hydroxydopamine mouse model of Parkinson's disease. *European Journal of Pharmacology*, 788, 92-103.
15. Chaturapanich, G., Chaiyakul, S., Verawatnapakul, V., Yimlamai, T., & Pholpramool, C. (2008). Enhancement of sexual motivation in male rats by *Kaempferia parviflora*. *Fitoterapia*, 79(3), 212-218.