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Abstract: 

        The homogeneous ternary quadratic equation given by 222 53 yxz +=  is analysed for its 

non-zero distinct integer solution through different methods. A few interesting properties 

between the solution are presented. Also, formulae for generating sequence of integer 

solutions based on the given solutions are presented. 
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Introduction: 

          It is well known that the quadratic Diophantine equations with three unknowns 

(homogeneous or non-homogeneous) are rich in variety [1, 2]. In particular, the ternary 

quadratic Diophantine equations of the form  222 yDxz +=  are analysed for values of   

D=29, 41, 43, 47, 61, 67 in [3-8]. In this communication, the homogeneous ternary quadratic 

Diophantine equation given by 222 53 yxz +=   is analysed for its non-zero distinct integer 

solution through different methods. A few interesting properties between the solutions are 

presented. Also, formulas for generating sequence of integer solutions based on the given 

solutions are presented. 
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                                        METHODS OF ANALYSIS 

 

The ternary quadratic equation to be solved for its integer solutions is 

                                      222 53 yxz +=                                                                   (1) 

We present below different methods of solving (1): 

Method: 1 

(1) Is written in the form of ratio as 
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which is equivalent to the system of double equations 
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Applying the method of cross-multiplication to the above system of equations, one obtains 
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Which satisfy (1) 

Properties: 

• 01)1,( ,108 =+−  ty  

• )1,(53)]1,()1,([2 3  xzy =+  

• 01)1,( ,108 =−−  tz  

•  ,1082)1,()1,( tzy =+  

Note: 1 

It is observed that (1) may also be represented as below: 
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In this case, the corresponding solutions to (1) are given as: 
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                         ,2=x      ,53 22  −=y     22 53 +=z  

 

Method: 2 

(1) Is written as the system of double equation in Table 1 as follows: 

 

                      Table: 1 System of 

Double Equations 

 

 

 

 

 

 

 

 

 

 

Solving each of the above system of double equations, the value of zyx &,  satisfying (1) are 

obtained. For simplicity and brevity, in what follows, the integer solutions thus obtained are 

exhibited. 

Solutions for system: I 

                    12 += kx ,            2622 2 −+= kky ,            2722 2 ++= kkz  

Solutions for system: II 

                   ,12 += kx            ,26106106 2 ++= kky          27106106 2 ++= kkz  

Solution for system: III 

                    ,kx =                 ,26ky =               kz 27=  

Method: 3 

                       Let 0, += kkyz  

                   22532)1( kxky −=                                                                           (3) 

Assume  

                )12(2 +=+=  kkkx                                                                               (4) 

 

   System 
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             kkky 26)22(53 2 ++=                                                                            (5) 

In view of (3)        

                 kkkz 27)22(53 2 ++=                                                                            (6)    

Note that (4), (5), (6) satisfy (1)     

Method: 4 

(1) Is written as 

 

      153 2222 ==+ zzxy                                                                                (7)  

Assume z as 

                    22 53baz +=                                                                                               (8) 

Write 1 as 
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Using (8) & (9) in (7) and employing the method of factorization, consider 
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Equating real & imaginary parts, it is seen that 
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Since our interest is to find the integer solutions, replacing a  by 31A & b  by 31B in (8) & 

(10), the corresponding integer solutions to (1) are given by  

             

( )  
( )  
( )  222

22

22

5331,

31811662231,

44159331,

BABAzz

ABBABAyy

ABBABAxx

+==

−−==

+−==

 

Properties: 
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Note: 2 

In addition to (5), 1 may also be represented as follows 
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For the above choice, the corresponding values of x, y, z satisfying (1) are given below: 
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                                     GENERATION OF SOLUTIONS 

Different formulas for generating sequence of integer solutions based on the given solution 

are presented below: 

Let ( )0,00 , zyx  be any given solution to (1) 

Formula: 1 

Let ( )11,1 , zyx   given by 

                           ,3 01 xx =        ,3 01 hyy +=       01 32 zhz −=                                     (11) 

Be the nd2 solution to (1). Using (11) in (1) and simplifying, one obtains  

                     00 42 zyh +=  

In view of (11), the values of 1y  and 1z  are written in the matrix form as  

                        ( ) ( )tt
zyMzy 0011 ,, =  

Where 
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 and t  is the transpose  
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The repetition of the above proses leads to the thn  solutions nn zy ,  given by  

                        ( ) ( )tnt

nn zyMzy 00 ,, =  

If  ,  are the distinct eigen values of M, then 

                          ,1=  9=  

We know that 
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Thus, the general formulas for integer solutions to (1) are given by 
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Formula: 2 

Let ( )111 ,, zyx  given by  

                       ,54 01 xhx −=     ,54 01 yhy −=      01 54zz =                                       (12) 

Be the nd2  solution to (1). Using (12) in (1) and simplifying, one obtains 

                      00 2106 yxh +=    

In view of (12), the values of 1y  and 1z  is written in the matrix form as 

                          ( ) ( )tt
yxMyx 0011 ,, =  

Where 
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
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M  and t  is the transpose  

The repetition of the above process leads to the thn  solutions nn yx ,  given by 

                       ( ) ( )to

nt

nn yxMyx 0,, =  
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If   ,  are the distinct eigen values of M, then 

                      54,54 −==   

Thus, the general formulas for integer solutions to (1) are given by  
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Formula: 3 

Let ( )111, zyx  given by 

           ,2 01 xhx −=     01 2yy = ,     hzz 72 01 +=                                                     (13) 

Be the nd2  solution to (1). Using (13) in (1) and simplifying, one obtains 

                       00 753 zxh +=  

In view of (13), the values of 1x  and 1z  is written in the matrix form as 

                         ( ) ( )tt
zxMzx 0011 ,, =  

Where  
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The repetition of the above process leads to the thn  solutions nn yx ,  given by 
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If  ,  are the distinct eigen values of M, then 

                ,53751+=      53751−=  

Thus, the general formulas for integer solutions to (1) are given by 
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Conclusion: 

           In this paper, an attempt has been made to obtain non-zero distinct integer solutions to 

the ternary quadratic Diophantine equation 222 53 yxz +=  representing homogeneous cone. 

As there are varieties of cones, the readers may search for other forms of cones to obtain 

integer solutions for the corresponding cones. 
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