Published Fast: - If it's accepted, We aim to get your article published online in 48 hours.

Home / Articles

No Article found
ECG SIGNAL ANALYSIS AND CLASSIFICATION USING MACHINE LEARNING ALGORITHMS
Author Name

Naveena S, Naresh Kumar G, Moulish T, Praveen Kumar D

Abstract

The project is a machine learning-based approach for ECG signal classification to detect arrhythmias in support of cardiac health diagnostics. Electrocardiogram signals are preprocessed to remove noise and then transformed into meaningful features to train the model. Based on datasets such as the MIT-BIH Arrhythmia Database, a classification algorithm has been implemented to distinguish between normal and abnormal heart rhythms with high accuracy. The solution is scalable for real- time monitoring, wearable devices, and healthcare diagnostics with a reliable and efficient alternative to manual ECG interpretation.

 

Keywords: ECG classification, arrhythmia detection, machine learning, signal processing, healthcare diagnostics, MIT-BIH Arrhythmia Database, feature extraction, real-time monitoring.



Published On :
2024-12-08

Article Download :
Publish your academic thesis as a book with ISBN Contact – connectirj@gmail.com
Visiters Count :